Math Formulas for Class 9, 10, 11 & 12
A comprehensive resource for all essential mathematical formulas, from basic algebra to advanced calculus. Perfect for board exams and competitive tests.
Class 9 Math Formulas (कक्षा 9 गणित सूत्र)
Number Systems (संख्या पद्धति)
Laws of Exponents for Real Numbers (घातांक के नियम)
- $$a^m \cdot a^n = a^{m+n}$$
- $$(a^m)^n = a^{mn}$$
- $$\frac{a^m}{a^n} = a^{m-n}$$
- $$a^m \cdot b^m = (ab)^m$$
- $$a^0 = 1$$
- $$a^{-n} = \frac{1}{a^n}$$
- $$(\frac{a}{b})^n = \frac{a^n}{b^n}$$
Example: LCM & HCF
प्रश्न (Question): 36 और 48 का HCF तथा LCM निकालिए।
फ़ॉर्मूला (Formula): $$HCF \times LCM = a \times b$$
समाधान (Solution):
- Prime Factorization of 36: $$36 = 2^2 \times 3^2$$
- Prime Factorization of 48: $$48 = 2^4 \times 3^1$$
- HCF is the product of common factors with the lowest power:
$$HCF = 2^2 \times 3^1 = 4 \times 3 = 12$$ - LCM is the product of all factors with the highest power:
$$LCM = 2^4 \times 3^2 = 16 \times 9 = 144$$ - Verification: $$12 \times 144 = 1728$$ and $$36 \times 48 = 1728$$.
Final Answer: HCF = 12, LCM = 144
Polynomials & Algebraic Identities ( बहुपद और बीजगणितीय सर्वसमिकाएं)
Key Identities (मुख्य सर्वसमिकाएं)
- $$(a + b)^2 = a^2 + 2ab + b^2$$
- $$(a - b)^2 = a^2 - 2ab + b^2$$
- $$a^2 - b^2 = (a - b)(a + b)$$
- $$(x + a)(x + b) = x^2 + (a + b)x + ab$$
- $$(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$$
- $$(a + b)^3 = a^3 + b^3 + 3ab(a + b)$$
- $$(a - b)^3 = a^3 - b^3 - 3ab(a - b)$$
- $$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$
- $$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$
- $$a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)$$
Example: Factorization
प्रश्न (Question): $$x^2 + 5x + 6$$ को गुणनखंडों में लिखिए।
विधि (Method): Find two numbers whose product is the constant term (6) and whose sum is the middle coefficient (5).
समाधान (Solution):
- The constant term is 6. We need two numbers that multiply to 6.
- The middle coefficient is 5. The same two numbers must add up to 5.
- The numbers are 2 and 3 (since 2 × 3 = 6 and 2 + 3 = 5).
- Split the middle term: x2 + 2x + 3x + 6
- Factor by grouping: x(x + 2) + 3(x + 2)
Final Answer: (x + 2)(x + 3)
Linear Equations (रैखिक समीकरण)
Example: Word Problem
प्रश्न (Question): एक व्यक्ति के पास 5-रु के सिक्के और 2-रु के सिक्के हैं। कुल सिक्कों की संख्या 20 है और कुल राशि ₹64 है। 5-रु के कितने सिक्के हैं?
विधि (Method): Set up and solve a pair of linear equations.
समाधान (Solution):
- Let 'x' be the number of ₹5 coins and 'y' be the number of ₹2 coins.
- Equation for total number of coins: $$x + y = 20 ---(1)$$
- Equation for total value: $$5x + 2y = 64 --- (2)$$
- From (1), we get $$y = 20 - x$$.
- Substitute this into (2): $$5x + 2(20 - x) = 64$$
- Solve for x: $$5x + 40 - 2x = 64 \rightarrow 3x = 24 \rightarrow x = 8$$.
Final Answer: There are 8 five-rupee coins.
Geometry: Lines, Angles & Triangles (ज्यामिति)
Area of a Triangle (त्रिभुज का क्षेत्रफल)
Standard Formula: $$Area = \frac{1}{2} \times \text{base} \times \text{height}$$
Example: Area of Triangle
प्रश्न (Question): बेस = 10 cm और ऊँचाई = 6 cm वाले त्रिभुज का क्षेत्रफल निकालिए।
फ़ॉर्मूला (Formula): $$Area = \frac{1}{2} \times \text{base} \times \text{height}$$
समाधान (Solution):
- Substitute the given values into the formula.
- $$Area = \frac{1}{2} \times 10 \text{ cm} \times 6 \text{ cm}$$
- $$Area = 5 \text{ cm} \times 6 \text{ cm} = 30 \text{ cm}^2$$
Final Answer: $$30 \text{ cm}^2$$
Heron's Formula (हीरोन का सूत्र)
For a triangle with side lengths a, b, and c:
First, calculate the semi-perimeter (s):
Then, the area is:
Surface Area and Volume (पृष्ठीय क्षेत्रफल और आयतन)
- Cube (घन): Surface Area = 6a2, Volume = a3 (where a = side)
- Cuboid (घनाभ): Surface Area = 2(l × b + b × h + h × l), Volume = l × b × h
- Cylinder (बेलन): Curved Surface Area = 2πr × h, Total Surface Area = 2πr(r + h), Volume = πr2 × h
- Cone (शंकु): Curved Surface Area = $$\pi rl$$, Total Surface Area = $$\pi r(r + l)$$, Volume = $$\frac{1}{3}\pi r^2 h$$ (where $$l = \sqrt{r^2 + h^2}$$)
- Sphere (गोला): Surface Area = $$4\pi r^2$$, Volume = $$\frac{4}{3}\pi r^3$$
- Hemisphere (अर्धगोला): Curved Surface Area = $$2\pi r^2$$, Total Surface Area = $$3\pi r^2$$, Volume = $$\frac{2}{3}\pi r^3$$
Class 10 Math Formulas (कक्षा 10 गणित सूत्र)
Algebra: AP & Quadratic Equations (बीजगणित)
Arithmetic Progressions (A.P.) (समान्तर श्रेढ़ी)
n-th term (nवाँ पद): $$a_n = a + (n - 1)d$$
Sum of first n terms (n पदों का योग): $$S_n = \frac{n}{2} [2a + (n - 1)d]$$ OR $$S_n = \frac{n}{2} [a + l]$$
Quadratic Equations (द्विघात समीकरण)
Standard Form: $$ax^2 + bx + c = 0$$
Quadratic Formula (द्विघाती सूत्र): $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
Example: Quadratic Roots
प्रश्न (Question): समीकरण $$x^2 - 5x + 6 = 0$$ के मूल निकालिए।
फ़ॉर्मूला (Formula): $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
समाधान (Solution):
- Identify a, b, and c: Here, $$a = 1, b = -5, c = 6$$.
- Calculate the discriminant (D): $$D = b^2 - 4ac = (-5)^2 - 4(1)(6) = 25 - 24 = 1$$.
- Substitute into the formula: $$x = \frac{-(-5) \pm \sqrt{1}}{2(1)}$$
- Simplify: $$x = \frac{5 \pm 1}{2}$$.
- Find the two roots: $$x = \frac{5 + 1}{2} = 3$$ and $$x = \frac{5 - 1}{2} = 2$$.
Final Answer: The roots are x = 2 and x = 3.
Trigonometry (त्रिकोणमिति)
Basic Ratios and Identities (मूल अनुपात और सर्वसमिकाएं)
- $$\sin^2\theta + \cos^2\theta = 1$$
- $$1 + \tan^2\theta = \sec^2\theta$$
- $$1 + \cot^2\theta = \csc^2\theta$$
Example: Basic Trigonometry
प्रश्न (Question): In a right-angled triangle, the side opposite to angle θ is 3 and the adjacent side is 4. Find the hypotenuse and the values of sinθ and cosθ.
फ़ॉर्मूला (Formula): Pythagoras Theorem: $$c = \sqrt{a^2 + b^2}$$. Also, $$\sin\theta = \frac{\text{Opposite}}{\text{Hypotenuse}}$$, $$\cos\theta = \frac{\text{Adjacent}}{\text{Hypotenuse}}$$.
समाधान (Solution):
- Find the hypotenuse (c): $$c = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5$$.
- Calculate sinθ: $$\sin\theta = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{3}{5}$$.
- Calculate cosθ: $$\cos\theta = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{4}{5}$$.
Final Answer: Hypotenuse = 5, sinθ = 3/5, cosθ = 4/5.
Coordinate Geometry & Statistics (निर्देशांक ज्यामिति और सांख्यिकी)
Distance Formula (दूरी सूत्र)
Example: Distance Formula
प्रश्न (Question): बिंदु A(2, 3) और B(7, 11) के बीच की दूरी ज्ञात कीजिए।
फ़ॉर्मूला (Formula): $$Distance = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
समाधान (Solution):
- Calculate the difference in x-coordinates: $$\Delta x = 7 - 2 = 5$$.
- Calculate the difference in y-coordinates: $$\Delta y = 11 - 3 = 8$$.
- Substitute into the formula: $$Distance = \sqrt{5^2 + 8^2}$$.
- Simplify: $$Distance = \sqrt{25 + 64} = \sqrt{89}$$.
Final Answer: $$\sqrt{89}$$ units.
Statistics (सांख्यिकी)
Mean (माध्य): $$\bar{x} = \frac{\Sigma x_i}{n}$$
Example: Mean
प्रश्न (Question): डेटा: 2, 4, 6, 8, 10। उनका औसत (mean) निकालिए।
फ़ॉर्मूला (Formula): $$\text{Mean} = \frac{\text{Sum of observations}}{\text{Number of observations}}$$.
समाधान (Solution):
- Sum of observations: $$2 + 4 + 6 + 8 + 10 = 30$$.
- Number of observations: $$n = 5$$.
- Calculate the mean: $$\text{Mean} = \frac{30}{5} = 6$$.
Final Answer: The mean is 6.
Class 11 Math Formulas (कक्षा 11 गणित सूत्र)
Sets, Relations & Functions (समुच्चय, संबंध एवं फलन)
Functions (फलन)
A function f from a set A to a set B is a rule that assigns each element x in A to exactly one element y in B. We write f(x) = y.
Example: Evaluating a Function
प्रश्न (Question): If $$f(x) = 2x + 3$$, find the value of $$f(4)$$.
विधि (Method): Substitute the value of x into the function's definition.
समाधान (Solution):
- Replace 'x' with '4' in the expression $$2x + 3$$.
- $$f(4) = 2(4) + 3$$
- $$f(4) = 8 + 3 = 11$$
Final Answer: $$f(4) = 11$$
Sequences and Series (अनुक्रम तथा श्रेणी)
Arithmetic Progression (A.P.) (समान्तर श्रेढ़ी)
n-th term: $$a_n = a + (n - 1)d$$
Sum of n terms: $$S_n = \frac{n}{2} [2a + (n - 1)d]$$
Example: Arithmetic Progression
प्रश्न (Question): In an AP, the first term $$a=7$$ and the common difference $$d=3$$. Find the 10th term and the sum of the first 10 terms.
फ़ॉर्मूला (Formula): $$a_n = a + (n-1)d$$ and $$S_n = \frac{n}{2} [2a + (n-1)d]$$.
समाधान (Solution):
- Find the 10th term ($$a_{10}$$): $$a_{10} = 7 + (10 - 1) \times 3 = 7 + 27 = 34$$.
- Find the sum of the first 10 terms ($$S_{10}$$):
$$S_{10} = \frac{10}{2} [2\times7 + (10 - 1)\times3]$$ - $$S_{10} = 5 [14 + 27] = 5 \times 41 = 205$$.
Final Answer: 10th term is 34, Sum is 205.
Advanced Trigonometry (उन्नत त्रिकोणमिति)
Sum and Difference Formulas
- $$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$
- $$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$
Example: Sum Formula
प्रश्न (Question): Find the value of $$\sin(75^\circ)$$ using $$\sin(45^\circ + 30^\circ)$$.
फ़ॉर्मूला (Formula): $$\sin(A + B) = \sin A \cos B + \cos A \sin B$$.
समाधान (Solution):
- Apply the formula with A=45° and B=30°.
- $$\sin(75^\circ) = \sin(45^\circ)\cos(30^\circ) + \cos(45^\circ)\sin(30^\circ)$$
- Substitute known values: $$\sin 45^\circ = \cos 45^\circ = \frac{1}{\sqrt{2}}$$, $$\cos 30^\circ = \frac{\sqrt{3}}{2}$$, $$\sin 30^\circ = \frac{1}{2}$$.
- $$= \left(\frac{1}{\sqrt{2}}\right) \times \left(\frac{\sqrt{3}}{2}\right) + \left(\frac{1}{\sqrt{2}}\right) \times \left(\frac{1}{2}\right)$$
- $$= \frac{\sqrt{3}}{2\sqrt{2}} + \frac{1}{2\sqrt{2}} = \frac{\sqrt{3} + 1}{2\sqrt{2}}$$.
Final Answer: $$\frac{\sqrt{3} + 1}{2\sqrt{2}}$$
Calculus: Limits & Derivatives (कलन: सीमा और अवकलज)
Limits (सीमाएँ)
Example: Evaluating a Limit
प्रश्न (Question): Evaluate $$\lim_{x\to2} \frac{x^2 - 4}{x - 2}$$.
विधि (Method): Direct substitution gives 0/0, which is an indeterminate form. Factorize the numerator.
समाधान (Solution):
- Factor the numerator: $$x^2 - 4 = (x - 2)(x + 2)$$.
- Rewrite the expression: $$\frac{(x - 2)(x + 2)}{x - 2}$$.
- Cancel the common factor $$(x - 2)$$. The expression simplifies to $$x + 2$$ for x ≠ 2.
- Now substitute x = 2 into the simplified expression: $$2 + 2 = 4$$.
Final Answer: The limit is 4.
Standard Derivatives (मानक अवकलज)
- $$\frac{d}{dx} (x^n) = nx^{n-1}$$
- $$\frac{d}{dx} (\sin x) = \cos x$$
- $$\frac{d}{dx} (\cos x) = -\sin x$$
Class 12 Math Formulas (कक्षा 12 गणित सूत्र)
Calculus: Differentiation & Applications (अवकलन और अनुप्रयोग)
Basic Differentiation (अवकलन)
Example: Basic Differentiation
प्रश्न (Question): Find dy/dx for $$y = x^3 - 5x^2 + 4x - 7$$.
फ़ॉर्मूला (Formula): Power rule: $$\frac{d}{dx} (x^n) = nx^{n-1}$$.
समाधान (Solution): Apply the power rule to each term.
- $$\frac{d}{dx}(x^3) = 3x^2$$
- $$\frac{d}{dx}(-5x^2) = -5 \times 2x = -10x$$
- $$\frac{d}{dx}(4x) = 4$$
- $$\frac{d}{dx}(-7) = 0$$ (Derivative of a constant is zero)
Final Answer: $$\frac{dy}{dx} = 3x^2 - 10x + 4$$
Application of Derivatives (अवकलज के अनुप्रयोग)
Example: Slope of Tangent
प्रश्न (Question): Find the slope of the tangent to the curve $$y = x^3$$ at the point where $$x = 2$$.
विधि (Method): The slope of the tangent at a point is the value of the derivative (y') at that point.
समाधान (Solution):
- Find the derivative of the function: If $$y = x^3$$, then $$y' = 3x^2$$.
- Evaluate the derivative at x = 2: $$y'(2) = 3 \times (2)^2$$.
- Calculate the result: $$3 \times 4 = 12$$.
Final Answer: The slope of the tangent is 12.
Calculus: Integration (कलन - समाकलन)
Standard Integrals (मानक समाकलन)
$$\int x^n \,dx = \frac{x^{n+1}}{n+1} + C$$
Example: Indefinite Integration
प्रश्न (Question): Find $$\int(6x^2 - 4x + 3) \,dx$$.
फ़ॉर्मूला (Formula): $$\int x^n \,dx = \frac{x^{n+1}}{n+1} + C$$.
समाधान (Solution): Integrate each term separately.
- $$\int 6x^2 \,dx = 6 \times \frac{x^3}{3} = 2x^3$$
- $$\int -4x \,dx = -4 \times \frac{x^2}{2} = -2x^2$$
- $$\int 3 \,dx = 3x$$
- Combine the results and add the constant of integration, C.
Final Answer: $$2x^3 - 2x^2 + 3x + C$$
Probability (प्रायिकता)
Binomial Distribution (द्विपद बंटन)
Example: Binomial Probability
प्रश्न (Question): एक सिक्का 3 बार उछाला जाता है। सटीक दो बार ‘Heads’ आने की संभावना क्या है?
फ़ॉर्मूला (Formula): $$P(k \text{ successes}) = {}^nC_k \cdot p^k \cdot (1-p)^{n-k}$$. For a fair coin, $$p = 1/2$$.
समाधान (Solution):
- Identify the parameters: n = 3 (number of trials), k = 2 (number of successes), p = 1/2 (probability of getting a head).
- Calculate the combination $$^nC_k$$: $${}^3C_2 = \frac{3!}{2! \cdot 1!} = 3$$.
- Substitute into the formula: $$P(X=2) = 3 \times \left(\frac{1}{2}\right)^2 \times \left(\frac{1}{2}\right)^1$$
- Calculate the result: $$P(X=2) = 3 \times \frac{1}{4} \times \frac{1}{2} = \frac{3}{8}$$.
Final Answer: The probability is 3/8.
Comments
Loading comments…